On the stability of support vector machines for face detection
نویسندگان
چکیده
In this paper we study the stability of support vector machines in face detection by decomposing their average prediction error into the bias, variance, and aggregation effect terms. Such an analysis indicates whether bagging, a method for generating multiple versions of a classifier from bootstrap samples of a training set, and combining their outcomes by majority voting, is expected to improve the accuracy of the classifier. We estimate the bias, variance, and aggregation effect by using bootstrap smoothing techniques when support vector machines are applied to face detection in the AT & T face database and we demonstrate that support vector machines are stable classifiers. Accordingly, bagging is not expected to improve their face detection accuracy.
منابع مشابه
Face Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملFault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method
In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملDemonstrating the stability of support vector machines for classification
In this paper, we deal with the stability of support vector machines (SVMs) in classification tasks. We decompose the average prediction error of support vector machines into the bias and the variance terms, and we define the aggregation effect. By estimating the aforementioned terms with bootstrap smoothing techniques, we demonstrate that support vector machines are stable classifiers. To inve...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کامل